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ABSTRACt

A theoretical model based on the linearization of the fluid

equations and Maxwell's equations for wave interaction in a uniform

plasma which is interpenetrated by a nonr_lativistic electron beam

is developed. The effects of electron-neutral and electron_ion col-

lisions and temperatures of both the beam and plasma electrons are

included and no quasi-static approximation is made for the electro-

magnetic field. An external d.c. magnetic field is assumed to act

so that a general formulation is developed which is valid in the

limit of small d.c. magnetic fields and in the limit as the field

becomes very large. Graphs of the computer solutions are given for

the propagation constants in a beam-plasma system for the cases of

an unbounded system and for the TM wave solutions that may exist in

an axissmmetric cylindrical system in which the finite beam inter-

penetrates an unbounded plasma.
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Chapter i

INTRODUCTION

The earliest work published on wave interaction in a plasma

system which is interpenetrated by a charged beam was that of

langmuir in 1925.1 The theory was developed specifically to explain

the generation of high frequency oscillations in a hot cathode

discharge.

Although the parallel plate magnetron was developed in 1921 by

A. W. Hull 2 and later refined by many scientists in the 1930's and

early 1940 's to produce the cylindrical multiple cavity magnetr_n

oscillator, the development of microwave amplifiers proceeded rather

3 in Germany published theirslowly. A. Arsenjeva-Heil and 0. Heil,

findings of the development of a velocity modulated beam tube which

was later given the trade name Klystron. Later, in 1939,

R. H. Varian and S. F. Varian 4 and W. C. Hahn and G. F. Metcalf 5

published their investigations of the klystron oscillator-amplifier.

With the advent of World War II, the development of the

magnetron and other microwave ampliers and oscillators was hastened

due to the obvious need in radar systems. The traveling-wave tube

was developed initially by R. Kompfner 6 at Oxford University in

1946, and later studied and improved by J. R. Pierce and L. M. Field

of Bell Telephone Laboratories 7 as a broadband amplifier. The

backward-wave oscillator was later studied by Jones 8 and Heffner. 9

I



I

I

I

I

I

I

I

i

I

I

I

1
i
I

I

I

I

Another scientific field that received a great deal of interest

during and inm_diately following the war was plasma physics.

Although studies of high frequency oscillations involving stationary

heavy ions and electrons had first been published as early as 1906

by lord Rayleigh 10 who obtained an expression for the electron

osdillation frequency, little work was done in this area until the

1940's. Impetus was given to the study of plasma physics initially
i

because of the importance of understanding propagation of electro-

magnetic waves thro_ ionized layers and the use of plasma devices

such as T-R switches and high frequency electron tubes.

Pierce, II in 1948, investigated the theory of interaction of

an electron beam with an ion cloud to explain the spurious oscilla-

tions he observed in traveling-wave tubes. Haeff 12 demonstrated

that amplification was possible when one electron beam interpene-

trates another. S_,_rt_y after _,,_, = _,_,_=r of authors -investigated

the double stream amplifier problem. 13,14,15

Since this work, there have been a large number of papers

published concerning investigation of the beam-plasma interaction

including investigation of stability of the systems, temperatures

and collisions in the model and the effects of finite systems.

Reviews of the history and extensive references are given in the

papers by Crawford and Kino 16 and Fainberg 17 and also the monograph

18
by Briggs. The papers given in these references treat different

aspects of the beam-plasma problem and in general do not consider

!
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the effects of magnetic fields, temperatures, collisions, and

finite geometries as a combined analysis. Crawford 19 has considered

the beam-plasma interaction process and has included temperature in

the plasma, plasma collisions, and boundedness of the electron beam

in a quasi-static approach with no d.c. magnetic field. Other in-

vestigations of beam-plasma interaction have recently been carried

20
out by the Plasma Research Group at Stanford.

The purpose of this investigation is to develop a theoretical

model that includes the effects of temperatures, collisions,

external d.c. magnetic fields, and finite dimension of the system

without using the quasi-static approach in describing the electro-

magnetic field.

The analysis that is developed does not consider gradients in

the d.c. electron densities or gradients of beam velocity and is

based on a linearization of the hydrodynamic equations and Maxwell's

field equations. The development is a small signal analysis and

is not valid for large signal perturbations of the d.c. quantities.

The theory is valid for small d.c. magnetic fields, but would not

be expected to hold when the pressures become non-diagonal tensor

quantities due to the effects of the d.c. magnetic field. In this

case, the foroes due to the pressure terms would have to be written

as a divergence of a pressure tensor rather than a gradient as is

shown in the development of Chapter 2. In the limit of an infinite

!
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magnetic field, however, the equations describing the system can

be obtained by taking the limit of large magnetic fields since, in

this case, the pressures can be treated as scalar quantities which

have variation only along the magnetic field direction.

In Chapter 2, the equations are developed by linearizing the

original fluid and electromagnetic equations and are shown to yield

a consistent mathematical description. The potential functions from

which the transverse quantities are obtained are derived and the

relations between the transverse components and the potentials are

given.

Chapter 3 considers the unbounded beam-plasma system and the

dispersion relations for both transverse (V • E = 0) and longi-

tudinal waves (V x E = 0) . Graphs of real and imaginary parts

of the propagation constant along the direction of the be&m are

given for different values of collision frequency, temperature,

electron density, and beam velocity for real excitation frequency,

.

The general bounded system is considered in Chapter 4 where

the method used to decouple the potential equations is explained

for the regions containing the plasma and beam and for the region

containing only the plasma.

Chapter 5 describes a particular example, that of the infinite

plasma through which an electron beam of finite radius passes. The

!
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solutions for the potential functions are exhibited in terms of

Bessel functions and Hankel functions and the boundary conditions

placed on these potential functions yield the allowable eigenvalues

and propagation constants for the problem. In this section, only

the solutions which have wave vector components in the direction

of the d.c. beam velocity are computed and the graphical results

for the real and imaginary parts of the propagation constant for

real values of frequency, m , are displayed. It can be seen from

a comparison of these results and the results given for the un-

bounded system, that the gain curves are considerably less broadband

for the finite radius beam case and do not indicate as high a gain

value.

Although the question of stability in this problem is an

important one, no analysis of the system stability is developed.

Self 21 has shown that collision frequencies of a very small magni-

tude tend to cancel the effects of "absolute" instabilities which

grow in time and therefore it is expected that the traveling-wave

instability would be dominant for propagation in the direction of

the d.c. electron beam velocity.

!
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Chapter 2

1%4EORETICALMODEL

2.1 Introduction

The two-fluidmodel chosen for this investigation of the beam-

plasma interaction system is based on a linearization of the fluid

transport equations, the adiabatic equation of state, and Maxwell's

field equations. The electron beamand plasma are assumed to occupy

the same region of space so that the most general formulation of

equations is developed. It is also assumed that the system is

excited by a high frequency source and the a.c. motion of the ions

can be neglected.

The cold ions provide the positive background charge required

to maintain a macroscopically neutral steady-state plasma and beam

system. The effects of finite temperatures of the beam and plasma

electrons are introduced through the adiabatic equation of state

and the perfect gas law. Electron-neutral and electron-ion colli-

sions are included by introducing effective collision frequencies

in the force equations.

No attempt has been made to consider inhomogeneities of the

d.c. plasma or gradients in the d.c. beam velocity. The effects of

electron-electron collisions are included only as they give rise to

their own species electron pressure term and effects due to ioniza-

tion, recombination, and attachment are not included explicitly.
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In the development which follows, no quasi-static approximation

has been made which neglects the a.c. magneitc field as is usually

done in the treatment of this problem. It will be shown that keeping

terms of the same order in the linearization, including the a.c.

magnetic field terms, leads to a set of self-consistent equations

with the electric and magnetic fields satisfying Maxwell's constitu-

tive equations. Although it might appear reasonable to neglect the

a.c. magnetic field from a comparison with the electric field, it

is instructive to carry along the a.c. magnetic field terms. This

is particularly true in consideration of terms arising in the a.c.

power theorems (Appendix A) and the dispersion equations for trans-

÷

verse waves (V • E = 0) where terms arising from the a.c. magnetic

field are of the same order as terms of the quasi-static results.

The description of all quantities is referred to the fixed

laboratory frame and it is assumed that the electron beam that

traverses the plasma is nonrelativistic. The description of the

beam quantities in the fixed reference frame is obtained by using

the Lor_ntz transformation of the electric field and the Doppler

shifted frequency.

2.2 Development of Linearized Equations

The system of equations to be linearized is of the form:

Maxwell's Equations

÷

÷ _H ÷
V x E = - _o _- Jm (2-1)

I
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where

+ DE
VxH= eo_+ e

Force _uation

mnk_-_+ v • V - qn( + v x B)

+ VP + mn x (_ -_ ) = F
6 vq8 B

Continuity Equation

V • (n _) + _n .. S
_t

Polyimopic State Equation

P n-Y = Constant

Perfect Gas Law

P=nKT

E = electric field intensity

H = magnetic field intensity

_o = permeability of free space

e° = permittivity of free space

J = electric current density source
e

Jm = magnetic current density source

F = externally applied forcing function

S = particle sink (source) function

(2-2)

(2-3)

(2-4)

(2-5)

(2-6)

!
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v B

qB

q : charge of particles under consideration

n : density of charged particles

v = charged particle velocity

B=_oH

P = pressure of charged particles due to thermal motion

T = temperature of charged particles

K = Boltzmann' s constant

= compression constant which for adiabatic conditions

is the ratio of specific heat at constant pressure

to specific heat at constant volume

= velocity of particles that collide with the charged

particles under consideration

= effective collision frequency for momentum transfer

of the charged particles of velocity v with particles

of velocity v8 .

In obtaining the collision term for Eq. (2-3), it was assumed

that collisions of particles of charge q and velocity v with

particles of species 8 is such that the momentum transferred is

proportional to the relative velocities before collision, that is,

the species _ is assumed to have essentially an infinite mass and

the effective collision frequency gives an average measure of the

momentum transfer as if all collisions were "head on". This

approximation assumes collisions of charged particles with neutrals

or ions of much larger mass than that of the charged particles under

consideration. Thus, scattering collisions which would give rise to

I
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the temperature of the charged species are not considered separately

in the collision frequency term. The randomness of motion is ac-

counted for in the pressure term of the force equation.

A linearization of the set of equations, (2-1)-(2-6), is

obtained by using the assumption that each variable is composed of

a steady and a time varying part. Thus, each term is written:

-> -_ ->

= + E1 (2-7a)E E°

H = H° + H1 (2-7b)

v - vO + vI (2-7c)

v8 = Vso + vSl (2-7d)

n = no + nI (2-7e)

P : Po + P1 (2-7f)

T - To + T1 (2-7g)

= J + (2-7h)Je eo Jel

-> -> -_

Jm- _ +J_ (2-7i)

S = SO + S1 (2-7j)

F = F° + F1 (2-7k)

where the (o) subscript refers to the steady, time invariant

quantities and the (i) subscript refers to the quantities which

have time variations. Substitution of these quantities into Eqs.

(2-1)-(2-6) yields two sets of equations when terms of the zeroth

and first order are equated separately.

I
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÷ _H1

V x E1 = - Uo _t Jml

-9- -9-

VxE = -J
o mo

÷ _E1 _). .4-

V x H1 = ¢o -_ + q(no $i + nl Vo) + Jel

-_ .4,. -)-

V X HO : q no vO + Jeo

+ {$o" v}_i + {$I"v} Vo_+m nl{ % • V} %

: q no(E 1 + vI x Uo Ho

(2-8a)

(2-8b)

(2-9a)

(2-9b)

+ v x IJ° Hl)+qnl(Eo+V ° x _o Ho)

.+

- VP1 - m no _ _q6($i - VBl)
S

_mn I 7 o ÷ ÷
8 _qB(Vo - $8o ) + F1

-)- _). -.1- .@. -).

m no{V O • V} vO : q no( % + vO x Po Ho) - VPo

- m no 7 _q.s(Vo - V6o) + F13 o

÷ % ÷ • V}nno V • vI + { • V} nI + nI V • v° + {_i o

-9-

n V • v
o o

8nI

- @t + SI

÷ {_o" v}n:S °

Y Ponl

PI- n
o

(2-10a)

(2-10b)

(2-11a)

(2-lib)

(2-12a)

I
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P n-Y - Constant (2-12b)
O O

I P1 = K(nl % + no TI) (2-13a)

P - n K T (2-13b)
O O O

In Eqs. (2-10a,b), the collision term was split so that the

o for the steady velocities can be different
collision frequency _q8

from that describing collisions for the time dependent velocities.

I

I
I

I
I
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One would expect that the collision frequencies would be different

on a physical basis since the cross section for collision is velocity

dependent. Also, Eqs. (2-12a,b) are obtained from Eq. (2-5) by

using the first two tervns of the binomial expansion. The convection

currents in Eqs. (2-ga,b) are written explicitly in terTns of densi-

ties and velocities and only external current sources are contained

in J
eo,l "

If we make the additional assumption that the steady variables

Vo ' Po , and no have no spatial variation, we obtain the follow-

ing set of equations:

+ @HI ÷

V x E1 = - _o Bt Jml

VxE = -J
O mo

(2-13a)

(2-13b)

.+

÷ @E1 ÷ ÷ ÷

V x H1 = eo @---_+ q(no Vl + nl Vo) + Jel (2-14a)

I
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-)" _ "+

+J
V xH O -qn O vO eo

\
+ {v° • V} $i : q no + vI x _o Ho

__ -9-

+ vo x _o HI)

-)" _ -)"

+ q nl(E o + v° x Uo Ho) - VPI - m no _qB($1 ÷Z - Vsl)
8

- m nI r.o (% _ $80) + F1
8 q8

(2-14b)

(2-15a)

0 = q no(E ° + v° x u° Ho) - m no
O -_ -> -_

7 VqB(V ° - V8o) + F
S o

(2-15b)

no V • vI + { • V} nI

_n1

_t + SI

O=S
0

(2-16a)

(2-16b)

Y Ponl

Pl-
n

o

P n-Y = Constant
O O

(2-17a)

(2-17b)

PI = K(nl To + no TI)

P =n KT
O O O

(2-18a)

(2-18b)

Substituting Eq. (2-15b), multiplied by nl/n , into Eq.

(2-15a) gives the first order force equation:

\

÷ ÷_1/ (El ÷ ÷+ {vO • V} v = q no + vI x U° HO

_q8($i + ÷ nI- VP1 - m n° Z - Vsl) + F1
8 no o

+ v° x _o HI)

(2-19)

I
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The remaining first order equations are written:

V x E1 = - "o _t Jml

->

÷ @E1 ÷

V x H1 = co --_ + q(n ° _I + nl %) + Jel

Bn1
÷ • V} nI - + S1n v • vI + {$o _t

YPonl

P1-
n
o

P1 = K(nl % + no TI)

Similarly, the zeroth order set is written:

VxE = -J
o mo

-> _> ->

+JV XHo : qno Vo eo

-> _> ->

0 : q no( % + v0 x Uo Ho) - m no

->

z VqB($° - $So) + F
g o

O=S
0

-y
P n : Constant
O O

P -n KT
0 0 0

We now define a thermal sound speed, u , such that

(2-20)

(2-21)

(2-22)

(2-23)

(2-24)

(2-25)

(2-26)

(2-27)

(2-28)

(2-29)

(2-3O)

I



I

I 15

I YKT

U2 _ 0 • (2-31)
m

I
I

Using Eqs. (2-23) and (2-30) to relate nI and P1 ' we can put the

first order set of equations in the final form:

--- Jml (2-32)i ÷ aHIV x E1 = - Uo at

I

I
I
I

.-).

-> -)-

V x HI = - E° a--_+ q Vl + m--u2 v + Jel (2-33)

+ { • v} v =qn +v Ix.oso +vox"o )

÷ ÷ _ P1 ÷

- VP I - m n° Z Vq6(V I - Vsl) + FI F
8 mu 2 n o

O

(2-34)

I
I

÷ ÷ aPI
no mu 2 V • vI + {v° • V} PI - at + m u 2 SI

The zeroth order set remains:

(2-35)

I

I

I
I

VxE = -J
O mo

V x HO = q no v° + Jeo

0 = q no(E ° + v° x Uo Ho) - m no _ Vq6(Vo - V6o) + F
6 o

(2-36)

(2-37)

(2-38)

I O=S
0

(2-39)

I

I
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The fact that Eq.

sources or sinks which produce charged particles of charge

mass m is a direct result of the restrictions that no ,

Po have no spatial variation.

(2-39) forces the problem to have no constant

q and

->

v ° ,and

2.3 Electron Beam-Plasma System Equations

In developing the equations for a combined beam-plasma system,

each species of electron (e.g., beam electron) must satisfy, sepa-

rately, a force equation and a continuity equationand it is assumed

that each species is governed byapolytropic equation of state

(Pn-Y = Constant) and the perfect gas law. This is equivalent to

saying that each electron of the combined system can be identified

at any time and position asbeing associated with the beam or plasma.

Maxwell's field equations then couple the two sets of fluid equations

through the electric and magnetic fields associated with the elec-

tron motion.

The purpose of this investigation is to consider wave

propagation in a beam-plasma systemand thus it will be assumed

that all field quantities can be written as explicit functions of

time and the coordinate along the beam direction. We shall also

assume that all field quantities can be expressed as:

÷ ÷ eJ(mt-kz)
Ql(r,t) = Ql(rt) , (2-40)

where r is a three dimensional position vector, m is the radian

excitation frequency of the wave, z is the direction along the

I
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beam, rt is a vector describing the coordinates transverse to z ,

k is the propagation constant in the z direction, and t and j

are time and the square rDot of minus one respectively. The actual

physical quantities are obtained by taking the real or imaginary

part of Eq. (2-40), thus:

Ql(_,t) = Re{QI(_ t) ej(mt-kz)} or Im{Ql(_ t) ej(mt-kz)}

(2-41)

The time and space dependence can also be interpreted in a different

manner if it is assumed that double-sided Laplace transforms have

been taken so that

Z:-= t:-_

The time and space dependence, is recovered by the inversion

integrals which are taken along appropriate contours.

The first interpretation will be used here since the purpose

of this investigation is to study discrete propagating waves excited

at a single real frequency, _ . Whether the first or second formu-

lation is adopted, however, the derivatives with respect to time and

the z dimension appear as:

aQl Jm Q1 aQl - jk Q1 (2-43)a--T÷ , -[£÷

for all of the first order field variables and therefore, the results

!
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derived in this paper apply equally well for real wave solutions or

solutions in the transformed space.

The equations of the first order describing the beam-plasm

system are written here with the explicit dependence on z and t

being suppressed since the same term multiplies all variables of the

first order. Thus, we arrive at the final form for the first order

equations describing the beam-plasma system where the subscript (i)

is implied but has been deleted from all first order terms:

-_ ÷ ÷

V x E + j_ Uo H : - Jm (2-44)

÷ ÷ ÷ Pb % ÷V X H - j_ ¢O E + e(% Vp + Nb _b + -- ) : Je (2-45)

mu_

-)" ÷ ÷ -9- P

_p)% %e (E oHo - Fm%(j_ + + + Vp x lJ ) + V% : % P ÷
mu 2 N po

P P

÷ ÷ ÷ ÷ _-.u,÷ -_

m NbCJ{_ - kVb} + Vb)Vb + Nbe(E + vb x _oHo + Vb x _oH)

: Fbo ( 2-47 )
mu{Nb

..).

u2 m N V • v + j_ P : S (2-48)
P P P P P

÷

u_ m Nb V • Vb + j(_- k Vb) Pb : Sb " (2-49)

The subscripts b,p refer to the beam and plasma properties
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respectively. In this final form, the variables are defined:

Nb,p : d.c. space and time invariant electron densities

Vb = d.c. electron beam velocity

.+

Ho : d.c. magnetic field intensity

E,H : a.c. electric and magnetic field intensities

respectively

Vb,p
: a.c. electron velocities

Pb,p : a.c. electron pressures

: m 2 where
%,p %,p %,p are the a.c. electron

density variations and 2 : YKT ire the
U_,p _- p,bo

squares of the thermal sound speeds

m : radian excitation frequency

e : magnitude of the electronic charge

m : mass of the electron

Vb,p = effective collision frequencies for electron-ion

and electron-neutral collisions

k : propagation constant in the z direction

_o : permeability of free space

co : permittivity of free space

Jm : a.c. magnetic source current

J = a.c. electric current source
e

Sb,p : a.c. electron sinks (sources) for beam and plasma

electrons

I
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Fb,p

Fb,po

= exter_m_l a.c. forces for beam and plasma electrons

= d.c. forcing function for beam and plasma electrons

respectively.

The collision terms in the preceeding equations were written

assuming that the heavy particles (e.g., neutrals, ions) are sta-

tionary so that momentum change is directly proportional to the

electron velocity. Thus, Vb,p are effective collision frequencies

for the combined electron-neutral, electron-ion collisions assuming

that the neutrals and ions have no motion.

The d.c. equations are now written as follows:

V x E = - J (2-50)
O mo

-> -_ ->

V X HO = - e Nb Vb + Jeo (2-51)

0 = - e N E + F (2-52)
p o po

0 = S (2-53)
po

0 : - eNb(E O + Vb x _o HO) - m Nb vO ÷vb + _bo (2-54)

where

->

E
O

J
mo

0 = Sbo (2-55)

= d.c. electric field intensity

= d.c. magnetic curr_nt source

i
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..@

J
eo

0

.+

H
o

Sb,p

= d.c. electric cur%oent source

= collision frequency of the d.c. beam for steady

momentum transfer

= d.c. magnetic field intensity

= d.c. electron sinks (sources) for the beam and plasma

electrons

= d.c. beam and plasma force functions.

The restrictions imposed on the steady variables such as the

condition that Sbo and Spo be zero and the relations between the

electric field and the force functions Fbo and Fpo are a direct

result of assuming that the beam velocity Vb and the densities

Nb , Np be constant in space and time. Thus, to have a completely

consistent system, we must apply or induce no constant electric or

magnetic fields unless they satisfy the Eqs. (2-50)-(2-55), and no

sources or sinks of electrons can act on the system if they are

constant in time. It is also clear that H
o is, in general, not

independent of position, since part of the steady magnetic field is

caused by the steady beam current. However, curr_nts in most beam

problems are very small or external magnetic fields are applied so

that the effect of this induced magnetic field can easily be neg-

lected. In all of the development that follows, the assumption will

be made that this induced magnetic field term can be neglected in

the first order equations and that any d.c. magnetic field is

constant in space as well as time.
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2.4 Transverse and Longitudinal Field Separation

We now separate the vector field quantities describing the

beam-plasma system into components along the beam (longitudinal) and

transverse to the beam direction. The general vector field quantity

is written as follows:

_t Qt (÷ _t Qz (+ +( ,k,m) : rt,k,m) + rt,k,m) az , (2-56)

where at and az are unit vectors transverse to and along the

beam, respectively, and the subscripts t,z refer to transverse

and z directed quantities. By separating the del operator, V in

the form

V : {Vt + _Z _} : {vt - jk _Z } ' (2-57)

we can write the following relations:

÷ Vt _t ÷ Vt -jk÷ _tV x A : x - az x Az az x (2-58)

-_ ÷

V • A : Vt • At - jk Az (2-59)

V ¢ : Vt ¢ - jk az ¢ (2-60)

Vt x (_z x_t ) : az(Vt At ) (2-61)

÷

Vt " (_t X_z) : az÷ • (V t x At ) (2-62)

The beam-plasma set of equations, (2-44)-(2-49), is now written in

the separated form by using the above relations.
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*Et + _""oHt= -Jmt

Vt x Et + j_ Uo Ht = - Jmz

(2-63)

- az x V% Hz z

(2-64)

vt * Ht- _" _o

x ._- j. _o_+ _<"_t +"_> - _

e_N _z + Nb_bz + Pb _b_

(2-65)

(2-66)

(j_ + _p)m % _pt

P

P ' %t
mu 2 N

P P

(ae + _p)m % %z - jkPpa+ %e Ez z

P ._

_pz P Fpoz
mu 2 N

P P

(J{" - kV b} + _b )m Nb _bt + Nbe(Et + Vbt x BO + Vb x _o Ht)

÷ Pb

+ Vt Pb = Fbt-m i Nb Fb°t

(2-67)

(2-68)

(2-69)

(3{e - kV b} + Vb )m Nb _bz + Nbe Ez

= Z - Fb°z

m_N b

- jk Pb az

(2-70)

u2 m %(V t • Vpt jk Vpz) + je P = Sp - p P

(2-71)
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m Nb(V t • _bt - jk Vbz) + j(_ - kVb) Pb = Sb (2-72)

2.5 Potential Function Equations

We can derive a set of coupled second order differential

equations involving potential functions from which the total field

solution is obtained. In this regard, we shall pick as potential

functions, the z directed quantities Ez , Hz , and the two pres-

sumes Pp and Pb " If a relationship between these potential

functions and the other field quantities is found such that all

field quantities can be derived from these potential functions

alone and the potential functions are unique for the given boundary

conditions, then, we have obtained a unique solution to the beam-

plasma interaction problem.

The derivation of the potential function equations is long and

tedious and will not be presented here, but is presented in

Appendix B. Only the results of the derivation for the sourceless

or homogeneous equations are given here.

<_ol_ _V_ Ez + k P -

m(m - j_p) _(_-kv b- j_b )

+ P
P

+
m Uo e Vbl

:jPb = 0÷J m_

E
Z

(2-73)
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We have yet to derive the equations from which the transverse

field quantities can be obtained from the potential functions E
Z '

Hz ' % ' Pb " This is the purpose of the next section.

2.6 Transverse Field-Potential Relationships

From Eq. (2-67) with all the external sources placed equal to

÷

zero, we obtain the relationship for Vpt :

(j_ + _p)m% Vpt - %e B az x Vpt + %e Et + 7t % = 0 . (2-77)

We can represent the cross product for a right handed coordinate

system as

az x Vpt : • , (2-78)
1

where in Cartesian coordinates Eq. (2-78) becomes:

÷ ÷ ÷ ÷ _y} ÷az x vpt = az x {Vpx ax + Vpy = Vpx % - V a

py x

(2-79)

Eq. (2-77) can bewrittenin the following form with the aid of Eq.

(2-79):

I
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or

where

and

r-

(j_ + Vp)m NP

-NeB
p o

e B°

(jm + _p)m%

-).

•vpt=-_tPp

mN
P

_

- n (jm + Vp[

eB
0

m

- %e Et

(2-80)

(2-81)

(2-82

(2-83)

with _-1 representing the inverse matrix of

_-I = _ , the urit diagonal _ + 4

such that

The relation for
Vbt

where

÷Vbt : =-IB " 'i-vt Pb - Nbe Et m- NbNbe vb _o az

is obtained from (2-69).

+

x_t_

j(m - kV b) + vb

)

j(m - kV b) + _b

From Eq. (2-63), the expression for a
Z x Ht becomes :

(2-84)

(2-85)

!
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-+ ÷ 1 ÷

- +jk_t}az x Ht {Vt Ez

J_ _O

(2-86)

Substituting this expression into Eq. (2-84) yields:

Vbt =

The result for

(2-87)•

{- Vt Pb - Nbe(l
kVb) ÷ Nbe Vb
,,, Et-J Vt Ez}

m Nb
(2-87)

->

Et is obtained from (2-63), (2-65), (2-81) and

÷ f_ (k2 - k2) _

Et = _.J o _ _ _2 _-i _ _(iP
_O eO

__ Vt Hz m_ Vb• x--+ (j
Z gO

k _) . vt Ez
_o eo

(2-88)

+ e___Z-1 . vt p + e _-1 . vt Pb_
mEo P mco J

The relation for Ht is obtained from Eq. (2-63) and is written:

÷ k ÷ ÷ i ÷
= --a x _E + --a x Vt E

Ht _o z J_ _o z z
(2-89)

We have shown that all transverse field quantities can be

derived from a knowledge of the z directed potentials Ez , Hz ,

and the pressure 5 and Pb and therefore, the total field solu-

tions are uniquely determined as long as the potential functions are

themselves unique. This uniqueness is proven in Appendix D.
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Chapter 3

UNBOUNDED BEAM-PLASMA INTERACTION

3. i Introduction

The unbounded beam-plasma system is studied here to obtain

some of the gross properties of such a system. One can usually

obtain some physical feeling or insight to a phenomenon of consider-

able complexity when the most simple model for the problem is

investigated. It is with this idea in mind that we now investigate

the infinite dimensional beam-plasma system where the plasma and

beam occupy the same space. Collisions, temperatures, and an

external d.c. magnetic field are assumed to be present. Because

the system is unbounded, no boundary conditions are placed on the

beam and plasma quantities and the solutions to the system equations

for first order variations are plane waves which propagate in the

medium.

It should be noted here that all d.c. quantities such as

densities, pressures, beam velocity, and magnetic field are space

independent so that the system equations derived in Chapter 2 are

applicable. As a consequence of these assumptions and the assump-

tion of an infinite system, we must consider the effects of the

d.c. magnetic field caused by the electron beam since, for very

large distances from the axis of the system, the magnetic field

becomes very large.

29
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One could postulate a drifting ion stream which travels with

the d.c. electron beam so that this magnetic field is absent and

only externally applied steady magnetic fields exist in the problem.

Such a drifting stream would still maintain a macroscopically neu-

tral plasma and would not interact with the high frequency field

excitations.

In the following development, we shall adopt the assumption

of a drifting ion stream to compensate for the magnetic field

caused by the electron beam. Such an assumption is not necessary

in the small, finite system because the small magnetic field caused

by the d.c. electron beam canbe neglected.

3.2 Mathematical Formulation

Since the system is infinite in all directions and is also

uniform, we can assume that all first order field quantities are

plane waves of the form:

el (_'t) = el e j(mt-_'_) , (3-11

->

where r is the three dimensional position vector in the space,

is the propagation vector.

With the field dependence expressed as in Eq. (3-1), the

differential operations are expressed as follows:

!
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I _QI Jm Q1_t

V x Q1 ÷ - j_ x Q1

I _ J_ ÷V . i ÷- " QI

(3-2)

I VQl÷-JSQ1 '

!

!

!

where the factor e3(_t-k'r)

each first order tenn.

is suppressed since it multiplies

The set of first order, linearized, beam-plasma equations

obtained in Chapter 2 are written in the following fashion:

I

I
I
I

V xE+ Uo--:0_t

÷ ÷ ÷ Pb _E
--= 0

V x H + e Vp + Nb vb + - Co _t
m_J

r%H

m 5 _ + e Np(E + Vp x Bo) + mNp Vp Vp + VPp : 0

(3-3)

(3-4)

(3-5)

I

I
I
I

vl % + +vb
_vb ÷ ÷ ÷

mNb[-_+ {Vb • V} + e (E + x Uo H + vb x BO)

+ m Nb Vb Vb + VPb = 0

_P
u2mV • (N _)+ P= 0
p p p 8t

(3-6)

(3-7)

I

I
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I
• • + _---_: 0u_m_ _"b_b_+_ %_b_ _Pb (3-8)

I
Using the relations of (3-2), this set of equations becomes:

I x _ - m.o H = 0 (3-9)

I

I
k x H + J e(S v + Nb _ +-- ) + m ¢

p b m_ o

E : 0 (3-10)

I mS(u- j_p) % - J S e(E + S x Bo) - _ Pp = 0 (3-11)

I m Nb{m - Vb • k - jvb} - j Nbe(_ + Vb x "9 + Vb x BO)

I -kPb= 0 (3-12)

I u2 mN (_ • _ ) - m P : 0P P P P
(3-13)

(3-14)

I Equation (3-13) can be solved for S ' yielding

I u2 mNP : P m P (_'_)p (3-15)

I Similarly, from Eq. (3-14),

I Pb _ m Nb: .-._..- (_ • _b ) •
(,,, - Vb • _)

l
(3-16)

I

I
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-).

We now assume that the beam velocity, Vb , and the d.c.

magnetic field, B° , are directed along the positive z axis.

With this restriction, we can simplify the cross product terms

involving Vb and B by representing the cross product using

tensor notation. The cross product of the unit vector a with
Z

-M

any arbitrary vector F is written

- Fx

azXF--- 0 •

0
Z

for a right-handed Cartesian coordinate system.

(3-17)

The expression for v
P

with the aid of Eq. (3-17)

!

i

is obtained from Eqs. (3-11) and (3-15)

i

I

i
i

i

e___°_÷l-_Vp:j_ • E (3-18)

where the tensors _ and _ _ are defined as:

- jVp - j _ 0

j _ _ - jVp 0

0 0 m - j_p

m

k k k k k k
x x x y x z

k k k k k k
y x y y y z

k k k k k k
z x z y z z

-- w

(3-19)

(3-20)
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eB
_ : --2° and { }-i

m

brackets.

indicates the inverse of the matrix in

The expression for vb is found similarly

I _ __
_b:J_ -_'- "{_÷% x _o_ '

I _ Vb •

I
I
I

I
I

I
I

I
I

(3-21)

where

m

D- j {I

0

0

- Vb • k - jvb

(3-22)

.+ -+

If kxE is not zero, Eq. (3-i0) can be combined with Eqs.

(3-9), (3-16), (3-17), and (3-21) to yield

-k_@ (_ _ •_) T +
o -_ - Vb --_--+ "

(_-Vb'k) j

k Vb ÷
• + .%- • E= 0

(m - Vb •

(3-23)

I where Y is the unit matrix,
i

I

I

I
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Vbk =

0 0

0 0 0

% kx % %

and is the transpose of _ ÷
Vb ;

0

Vb kz

m

ko : _(_o Eo)% "

(3-24)

The determinant of the matrix multiplying E in Eq. (3-23)

must be zero for non-vanishing electric field and gives the dis-

persion relation for _ as a function of m (or m as a function

of _) provided that no component of E is zero. If any component

of E is zero, (e.g., Ex = 0) , then the dispersion relation is

given by the relation that the cofactors of the corresponding

column elements of the matrix (the cofactors of the xx , yx , zx

terms) are zero.

We shall now consider two special wave solutions where

k x E = 0 , defined to be longitudinal waves, and k • E = 0 ,

defined to be transverse waves.

3.3 Longitudinal Waves-- _ x _ : 0

If k x E = 0 , there is no a.c. magnetic field associated
i

with the wave, and Eq. (3-23) reduces to
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.+ -+

(_ - Vb •

" - ÷ "E=0

\ (_ - Vb •
(3,-25)

We now consider a particular example of a longitudinal wave

where _ is directed along the positive z axis, the direction of

the d.c. magnetic field and the beam velocity. Equation (3-25) is
i

then written

<0 I(i1• _ =_ •

(e- Vb kz).J J

= 0 . (3-26)

The dispersion relation is given by the condition that the

->

thir_ column of the matrix multiplying E be zero, that is, the

xz , yz , and zz elements are zero.

With k directed along the positive

- _z _z _2 _ _2
P

direction, the matrix

j_ op

- j_ _ o
P

0 0

£2 _ _2
P

k 2 u 2

z 2_
p =

(3-27)

I
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where

I ap - m - j_p .

I
I

I
I

I
i

I
i
I

I

I

Similarly,

1

nb Jn

0 0

where

_b-

and

%.

(_ - Vb kz_

_5 - m - Vb kz - J_b

m

1 0

0 1

0 0

(_ - Vb kz)

m

0

0

- Vb kz

(3-28)

(3-29)

(3-30)

(3-31)

I

I
I

.+

Since, the xz , and yz terms of the mtrix multiplying Ez

are identically zero, the only relation obtained fromthe dispersion

equation is that the zz term must vanish. Thus, the dispersion

relation becomes:

i

I
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1 up : 0 . (3-32)

_(m-jVp) - k2U2zp (_-kzVb)(_-kzVb-J_b) - k2LL2ZD

Calculations were carried out for the longitudinal waves given

by the dispersion equation (3-32). In particular, the longitudinal

waves which indicate the possibility of amplification_ that is,

have both positive real and imaginary propagation constants for

real excitation frequency, were investigated by obtaining computer

solutions to the fourth order dispersion equation. The results for

various parameter values are shown in Figs. (3-1)-(3-20). The

results of these computations can be sunmmrized in the following

way:

io

Warm-Beam--W_-Plasma -(N°-CollisionS --_p = vb = 0)

For values of beam velocity, Vb , much greater than the

adiabatic sound speed in the plasma, Up , the warm plasma calcu-

lations differ from the cold beam-plasma case only close to the

region m = _ , where the effect of plasma temperature limits the
P

real and imaginary parts of the propagation constants to finite

values (Figs. (3-1) and (3-2)).

2. It was found that maximum gain is obtained when m = m and
P

the beam velocity is greater than but on the order of the adiabatic

sound speed in the plasma (Fig. (3-3)).

3. The effect of the maximum gain parameter (Vb/Up)ma x was to

peak the gain and make the real part of the propagation constant a
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smooth function of m/Up so that no sharp break in the real part

of kz versus m/rap occurred. Any value of Vb/U p not correspond-

ing to the maximum gain value left a hump in the real part of the

kz versus m curve at m = up (Figs. (3-3), (3-4), and (3-5)).

4. It was found that the maximum gain obtained near the plasma

frequency for large values of Vb/Up saturated for values of beam

density such that (mb/mp)2_ 4 (Fig. (3-6)).

5. The effects of beam temperatures are not seen unless ub _ uP

in Which case the beam temperatures tend to decrease the amplifier

gain and increase the range of m over which gain occurs.

6. Figures (3-7) and (3-8), show all four solutions to the dis-

persion relation of Bq. (3-32) when collisions are absent. All

solutions with complex parts will exist with complex conjugate

counterparts since this dispersion equation without collisions is

real.

Warm-Beam--Warm-Plasma (Collisions Included)

i. It is shown in Figs. (3-9)-(3-20) that collisional effects are

most noticeable when:

(a) the collision frequencies are on the order of a

tenth or more of their respective plasma frequencies

(b) the beam velocity, Vb , is much greater than the

sound speed of the plasma, u
P

(c) the beam density is small compared to the plasma density.

I
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UNBOUNDED BEAM-PLASMA CALCULATIONS

For the graphical results shown in Figures (3-1)-(3-20) the

following labels are used:

_

C=__ °
U

P

E=-£

P

_b
F -- n ,

%

I
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2. In Figures (3-17)-(3-20), it is shown that the collision

frequency of the beam electrons tends to increase the gain of the

amplifier while collisions in the plasma decrease gain. The reason

for this is shown by the fact that the a.c. velocity of the beam

is in phase with the electric field when m is greater than m .
P

After collision, the velocity becomes 180 ° out of phase and can

give energy to the field.

3. It is somewhat questionable whether collision frequencies on

the order of the plasma frequency couldbe obtained in practice

for a beam-plasma system, however, the calculations were carried

out to indicate the general mathematical trends and effects of

collisions.

Physical Mechanism for Longitudinal Wave Amplification. We

n_: invastigatc the physical mechanism bywhich longitudinal waves

are amplified. To do this, we shall consider the simplest case of

an infinite system with no collisions or temperatures and with a.c.

velocities directed along the beam and the d.c. magnetic field.

For longitudinal waves, the curl of the electric field vanishes,

(_ x E) = 0 , which makes the a.c. magnetic field also vanish. The

dispersion relation, then, is derived from (3-10) which is just the

condition that the sum of the displacement, plasma, and beam c_ts

be zero.

Upon substitution of the other constitutive relations, (3-11)-

(3-14), the Eq. (3-10) becomes:
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_l _2J=,o_z - _£

=2 _(=-kzV b)

(3-33)

where the terms correspond to displacement, plasma, beam, and beam-

space-charge drift currents respectively. The dispersion relation,

then, is

i--_-

_2 (_ _ kz Vb)2

: 0 (3-34)

which is the result derived in (3-32) for a cold, collisionless

system. Equation (3-34) can be solved for kz giving:

(=
kz Vb)2 - _2 _ u2

P

(3-35)

_b = _b =

(_ - kz Vb) = + = + j -
(3-36)

I =_/
= %

= l_'j (3-37)

Equation (3-37) indicates that the system couldpossibly

amplify as long as the plasma frequency is greater than the excita-

tion frequency, = , since kz can have both positive real and

imaginary parts. Furthernore, the equation suggests that in the

absence of collisions and temperatures, the gain could become

infinite when the system is excited at the plasma frequency.
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Introducing only beam collisions or beam temperature does not change

the possibility of infinite gain, whereas plasma collisions and

temperature restrict the gain to a finite value.

We can see the dependence of each of the current terms on

frequency if Eqs. (3-35)-(3-37) are substituted into Eq. (3-33).

The result is:

I _2 mb(_ _ _ _2)½J_ %_z 1 __e+ j
_2 -- m2

_i _2
--£+j

_2 --

= 0 , (3-38)

where, again, each term corresponds to displacement, plasma, beam,

and beam-space-charge drift currents respectively. A phasor dia-

gram of these currents is shown in Fig. (3-21) corresponding to the

case where Im(k ) is positive (bottom signs) and m is greater
z p

than m .

Power interaction can be studied by investigating the terms

of Ez • J which are obtained from Eq. (3-38) after taking the

dot product of Ez and the conjugate of (3-38). We can see from

Fig. (3-21) that the power term involving the space-charge of the

beam has a negative real partindicatingthat this term gives energy

to the system while the term involving the a.c. beam velocity has a

positive real part indicating that it absorbs energy from the system.

The terms involving the displacement current, the plasma current, and
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the imaginary portion of the beam space-charge cun_nt are energy

storage terms. It should be noted that the energy stored in the

plasma and free space per unit time is the negative of that stored

by the bunched electrons of the beam so that a resonance exists

between these two systems. At the same time, the energy transferred

from the bunched electron beam is equal to the energy picked up by

the a.c. beam velocity.

At first, there seems to be no net gain of energy in the

system, however, the increase of a.c. beam velocity is also related

to the electric field Ez through the force equation, (3-12).

Thus, an increase in electric field is also produced so that the

total energy of the system increases. The beam space-charge, then,

provides the gain by interacting with the electric field with a loss

of its d.c. velocity, providing the necessary energy. We have not

Lnc!uded anti,here in this discussion, the gradient in d.c. beam

velocity due to this energy transfer. It has been assumed that the

energy transfer per unit length is small so that there is little

change in the d.c. beam velocity. The beam interaction process is

the same as that which produces gain in conventional traveling-wave

tubes except that the plasma, rather than a metallic helix, provides

the "slow-wave structure."

A major distinction between the plasma and helix "slow-wave

structures" is that the plasma may enhance the gain mechanism. The

plasma is necessary for this gain system because it provides the

I
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inductive energy storage system that allows the electric field to

become quite large. In fact, the r_ason that this system predicts

infinite gain near the plasma frequency is that near reasonance,

=mp , the electric field associated with the plasma oscillations

become very large and, therefore, the beam interaction with the field

!
!

!

is greatly enhanced. Introducing collision frequencies in the

plasma, temperatures in the plasma, or finite dimensions of the

system will not allow the plasma oscillations to approach a very

large level near the plasma frequency and thus the electric field

and the gain per unit length will remain finite.

!

I
I

-). -).

3.4 Transverse Waves-- k • E : 0

If k • E = 0 , there is no volume charge for the electric

lines of force to terminate on so that the electric field is

solenoidal and the pressures are zero. The equation governing the

electric field, (3-23), reduces to:

I °<

| ka_ (._ *b "I_<_ ÷--_- , - -_- I>
o_2 \ (__ Vb. _ (,,, Vb .

k Vb ÷
• + + • E : 0 . (3-39)

!
!

We shall again choose a special case in which _ is directed

along the positive z axis. The dispersion relation is given by

!
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the condition that the cofactors of the third colunm elements of

the mat-fix multiplying E be zero. Using the relations obtained

from the longitudinal waves section, Eqs. (3-24), (3-27), (3-29),

and (3-31); we obtain the single relation

k2_ (__ vb kz) m

0 _2 _2

2

or

k2 : k2 'i
Z O] - '

!

k

_ i(_-% kz)1m

= 0 (3-40)

(3-41)

Equation (3-41) describes the left and right hand circularly

polar_ized waves that propagate in the beam-plasma system where the

(+) sign corresponds to left-handpolarization or counterclockwise

rotation about the d.c. magnetic field and the (-) sign corresponds

to right-handpolarization or a clockwise rotation of the electric

vector. If the term Vb x _oH had been neglected as in a quasi-

static approach, the last term in Eq. (3-41) would have been

k2_0

.(% +__)
(3-42)

In any event, there is no gain mechanismin this transverse

field case, so that no growing waves can be excited. This fact is
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a result of theme being no a.c. space-charge current which may

interact with the electric field.
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Chapter 4

BOUNDED BFAM-PLASMA INTERACTION

4.1 Introduction

We have shown in Chapter 2 that the field quantities of the

beam-plasma system can be derived from a set of scalar potential

functions, Ez , Hz , Pp , and Pb ; which are the z directed

electric and magnetic fields and the plasma and beam pressures

respectively. In general for small signal conditions, we have seen

that the equations for these potentials are a set of second order,

linear, coupled equations whichmayhave coupled boundary conditions.

The method of solution that will be employed here consists of

decoupling the equations by means of a similarity transformation,

which, in general, causes the boundary conditions to be coupled.

We essentially change the basis functions by whichwe describe the

physical system to a new set of basis functions which are uncoupled

in the set of second order equations. This approach to the problem

22 23
is similar to that used by Breslerand Marcuvitz, Sancer, and

24
more recently by Chen and Cheng.

The method is nearly impossible to carry out algebraically for

a general system and computers are necessary to determine the

eigenvalues of the basis potential functions and the propagation

constants. Once the eigenvalues and propagation constants are

found, however, the exact solution of the problem is exhibited in

6g
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terms of appropriate eigenfunctions.

Other techniques, such as a perturbation method which treats

the coupling terms as forcing functions for the equation, could be

used to solve the coupled set of equations; but this becomes some-

what tedious when there is coupling between many of the basis

functions. Such a technique has been used by Nield 25 in investigat-

ing guided waves in a warm plasma filled waveguide. We shall now

describe the transformation approach to solve the general bounded,

beam-plasma interaction problem where the beam and plasma may

occupy different regions of space.

4.2 The Similarity Transformation

The four homogeneous differential equations derived in

Appendix B, Eqs. (2-73)-(2-76), can be expressed in terms of a

four-vector and the coupling exhibited by a coupling matrix. The

expression is concisely:

or

+

v_{x}+_. {x}: 0

ffll f12

°oo
,3
° :I¢

I

°'" f44 j
J

Ez

Hz ,: 0 (4-1)

subject to the boundary conditions. If we can find a transformation

matrix, _ , such that _-i . _ . _ = _ , where _ is the coupling
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matrix of Fq. (4-1) and _ is the diagonal eigenvalue matrix of

F ; then we can transform the four-vector X into a new vector U

by the relation X : S • U with the result that the transformed set

of equations are uncoupled. Following this procedure for Eq. (4-1)

gives:

x : _ • u (4-2)

v "U}+ "{S. :0

Operating on the left by _-i and realizing that _-i commutes

with the transverse Laplacian operator as long as _ is at most a

function of z coordinate, we obtain:

or

v_{_-1._. 5}+ {_-i.}. _} . {u}: o

v_{u}+ ?. {u}: o

(4-3)

(4-4)

subject to the boundary conditions that are determined by the

boundary conditions on X and the transformation X = _ • U . In

its explicit form, Fq. (4-4) is written:

v_

I

U]

U;
+

U,

%

0_ [

=0 (4-5)

I
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where the X2's are the eigenvalues of the matrix _ . In this

uncoupled form, we can choose the set of eigenfunctions U. and
l

use the boundary conditions to select the allowable eigenfunctions

and eigenvalues for the problem.

This diagonalization procedure can always be carried out as

long as the matrix _ is semi-si_ple--that is, as long as the

matrix _ has a complete set of eigenvectors regardless of degen-

eracy of eigenvalues. If _ is not semi-sim_le then the transformed

matrix _ can be put in the Jordan canonical form with the eigen-

values of F on the diagonal and ones or zero's in the position

adjacent to two equal eigenvalues. Thus, in the Jordan canonical

form, A might appear as

A=

XI2

0

0

i°0°]
Ii2 0

0 X32 I[_
0 0 XI.I.2

(4-6)

m

The transformation matrix S that must be used is the matrix

formed by filling the columns of _ with vectors proportional to

the eigenvectors of the matrix _ . In the event that _ is not

==

semi-s_le, we can construct S such that the set of vectors is

linearly independent with the result that the transformed matrix,

, is in Jordan canonical form. A more thorough discussion of this

26
problem is given by Pease.
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If the eigenvalues of _ are not distinct and the matrix

is not semi-simple, then a perturbation method may be used to solve

a set of equations as in (4-6) where the coupling term is treated

as a perturbing source function.

4.3 Beam-Plasma Region

For the region of space occupied by both the beam and plasma,

the set of relations describing the interaction is written in the

following form:

/

Ez

Hz

1 f12 f13 f14

0 • •

j_ • • •

• • •
...... f44/

1EzH
where

_o e Vb

mu_

0 (4-7)

I

I
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i _2 _(__kVb )B 0 _(__j_p) _2(__kVb_J_b)/
f22 = k2 P .... k2

!
ea P

D f23 : (_ - j_p) m u2
P

!

I
I

I

f24 =

k2_
e_ <_ - kV b - (__kVb_J_b)/

(=- kvb - j_b_m u_

f31 : j

k ¢ _2 =2 m
0 pe

• )2
(_ - ]Vp

i fa_:_ \ (=_ j.p)/

!
_ 1 t_(__jVp ) _ k2u2 _ _2

D f33 - u2 p pP

_2

m _2
f34 : - p

HB <k_2 m_ e° mb-] b)" <i _2 1
m(_-j Vp) _(m-kVb-J vb

!

!
f42 :

(m - kVb) i _o eo m 2

e(m - kV b - jvb)

|

!



i

i

I
I
i

I

I
I

I
I

I
I
I

!
I

I
I

i

75

kVb _0 Co

f43 : - m

(_ - jVp) u2P

f44 : _2 ((w-kVb)(_-kVb-JVb) - k2 _- _

_ _2
[(_-kV b) (_-kVb-JV b) - k2 _]

(_ - kVb - jvb )2

÷i vb"o_o\c.kVbj_b_÷Vb)_

The eigenvalues of _ are found from the relation

Deten_inant(_ - _2 _) = 0 (4-8)

which gives a fourth order equation in _2 and can _ solved by

computer techniques to yield the four eigenvalues l_ ... l_ .

Since we have to construct the columns of _ proportional to

the eigenvectors of _ , we can simply construct the vectors Sik

proportional to the cofactors of one row of (_ - l_ T) . This

can be shown by an actual solution of the simultaneous equations

for Sik . Thus, one possible similarity transformation matrix

might appear as

i
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S=

m m

(4-9)

where the Fij(1 _) are the i,j th cofactors of (?- I_ ?) . It

is clear that we cannot construct the columns of _ in the above

manner if 12= = I_ or one of the eigenvalues is zero since

would then have no inverse. 2bus, if _ has a repeated eigenva].ue,

12 , we must construct the first vector in the manner described

above and construct the remaining vectors for 12 such that the

_ matrix is composed of a set of linearly independent vectors.

Under the transformation given by Eqs. (4-2)-(4-4), then, we obtaLn

the transformed set of equations

U:

U,
V2.
t U

_U _

0

+ I_ .

0
= o (4-1o)

subject to the boundary conditions given by X : _ • U and the

boundary conditions on X . We may pick, then, the class of func-

tions that generally satisfy Eq. (4-10) and use the boundary

conditions to restrict these functions and the eigenvalues to an

allowable set.

I
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4.4 Plasma Region

The set of second order differential equations for the plasma

region is obtained from the general beam-plasma set by placing all

plasma quantities equal to zero. The set of equations becomes:

_IHZ_ /gll g12

z + \g21 g22

V__%_ <g31 g32

IEz!I.Ha= 0 (4-11)

Ol_

V_{Y} + _ • {Y} : O ,

where

gll o m(m_j_p)/

g12 : 0

- ]_p

g21 : _ jk eo_ I m_ _]

\(__j_p) 27

g22 o - m (m-jVp)/

g23 :
(_-jVp)/

(m-j_p) m u2P
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g31 :

jk ¢ _2 _2 m
o p

e(m - jVp) 2

m I _ Po ¢0 _)/
g32 e

- 3Vp/

/

: 1 (_(_ - jVp) - k2u 2 - _o2
g33 U2 \ p p

P

%

n2 [=(=_ J_p) _ k2 u_1
(w-jVp) 2

The similarity transformation _ is obtained from the

cofactors of G . One possible transformation is

GI2 (V_.) GI2 (_[) GI2 (V!) !

G13(V i) G13(V _ ) GI3(_) _

where the
Gij(P_) are the i,j th

are the eigenvalues of

cofactors of (G - u_ I)

obtained from

Deter_inant(_- _2 y) : 0 .

The transformation of (4-11) is obtained by using the

similarity transformation _ such that

Y:_-V

(4-12)

and

(4-13)

(4-14)
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where Y is the potential function three-vector

•

(4-15)

The resultant transformation gives:

+

I

\0

l112

13

: 0 (4-16)

provided of course that G is semi-simple. We may now pick the

class of functions satisfying (4-16) and use the boundary conditions

determined by Y = _ • V and the boundary conditions on Y to

choose the allowable eigenfunctions and eigenvalues.

I
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Chapter 5

I FINITE BEAM-INFINITE PLASMA SYSTEM

I

I
I

5.1 Introduction

We now consider a particular example to illustrate the methods

developed in the preceding chapters. We shall investigate the inter-

action of a finite beam in an infinite plasma where the beam and

I
I

I
l

angle 0 .

! //////_JJ>_--_/,,,"//%_/
I /"///////////_ Plasma //,//

I , /

I

I
I

plasma are both warmand are assumed to have electron collisions with

neutrals and ions of the background. No d.c. magnetic field acts

in the problem and the a.c. magnetic field component, H , is as-
Z

sumed to be zero so that we are looking for the transverse magnetic

(TM) modes that propagate in the system. In addition, the assump-

tion is made that all potentials are axisyn_etric and there is no

variation of the beam-plasma quantities with respect to the polar

Fig. (5.1) BEAM-PLASMA SYSTEM
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This problem is very similar to the one that was previously

investigated by Crawford 19 except that no quasi-static approxima-

tion is made here and the beam is assumed to be warm. The electron

beam is cylindrical in shape and interpenetrates the plasma

background.

5.2 Beam-Plasma Re$ion

For the beam-plasma region, we must diagonalize the coupling

matrix as in Chapter 4 so that the equations describing the beam-

plasma region become:

l_ U2 = 0 (5-1)

and

=_" :

\u:

1= s • u (5-2)

where _ is the similarity transform defined in Chapter 4 and E
Z '

Pp ' Pb are the potential functions for our problem. The form of

(5-1) is obtained if the eigenvalues are distinct or the coupling

matrix, F , is semi-single.

In a cylindrical system where the potentials have no %

variation, the solutions to (5-1) are of the form:

!
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I Ui : ai Jo(_i r) + bi Yo(_i r) (5-3)

I
I

I

where ai and bi are amplitude constants, Jo and Yo are the

zeroth order Bessel functions of the first and second kind, respec-

tively; and the li are the square roots of the eigenvalues of

which in general are complex.

I

I

5.3 Plasma Region

The equations in the plasma regionare written in a form

similar to those of the beam-plasma region.

i

I

I and

I

I

I

I
I

I
,V2<"

+_ = 0
0 p

(5-4)

(5-5)

where _ is the similarity transform matrix as defined in Chapter 4.

The solutions for (5-4) are chosen to be of the form:

VI.= c.iHl(_i r) + d.l Ho2(_i r) (5-6)

I

I

where HI and H2 are the zeroth order Hankel functions of the
O O

first and second kind, respectively, and the Pi are the square

I
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roots of the eigenvalues of the coupling matrix _ .

5.4 Boundar_ Conditions

The boundary conditions we shall apply to the system are

boundedness of the potential functions at the origin and the radi-

ation condition for large radii and the boundary conditions at the

beam-plasma--plasma interface which are derived in Appendix C.

These conditions are written in the following manner:

Boundedness at the Omit'in

Bounded at r : 0 (5-7)

Radiation Boundary Condition

%J
: 0 (5-8)

where

r: a

kr is the radial propagation constant.

are:

pZ
Continuous at r : a

The conditions at

(5-9)

I
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r:a+

Er = Psb
¢o r=a-

(5-10)

Nb evbr(r:a_) : - Psb

j(m - kVb)

(5-11)

ar x _ r=a+ Vb= (5-12)
r:a- Psb

The condition that _ be continuous at the boundary is
l

actually the condition that Vpr be continuous since Vpe is

zero for this problem and the conditions that E and P be con-
z p

tinuous forces Vpz to be continuous because of the force equation

for the plasma electrons. The condition of boundedness at the

origin restricts the solutions (5-3) to be zeroth order Bessel func-

tions of the first kind only.

Ui = ai Jo(Xi r) (5-13)

The radiation condition at large radius restricts the solutions

(5-6) to be the form:

or

Vi : ci H_(_i r) (5-14)

H_(uiVi : di r) (5-15)

depending on the branch we choose for (u_)½_ , since vH_l(uir)

2
decays while H_(u i r) grows exponentially for the imaginary part

!
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of Pi being positive and radius increasing. Thus, if the imaginary

part of i_i is positive we must choose the H1 function and if it
0

is negative, the H2 function. We can choose to pick only the HI
O O

function for either branch, however, since

H2( - y) = - HI(y) (5-16)
O O

so that if _i has a negative imaginary part, we shall choose the

potential function in the following form:

Vi = - ci Hlo(- vi r) . (5-17)

The conditions at the boundary r = a can be written in the.

following manner:

Ez(r=a+) = Ez(r=a-) (5-18)

P (r:a+) : Pp(r:a-)P

Vpr(r=a+) = Vpr(r=a-)

Co Er(r=a+) - ¢o Er(r=a-) = Psb

(5-19)

(5-20)

(5-21)

_e Vbr(r:a-) = -

Psb

j(m - kVb)

(5-22)

He!r=a+) - He(r:a-) : Psb Vb " (5-2_)

Equations (5-21) and (5-22) give just one relation for vbr and Er

!
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so that we have five independent boundary conditions to be applied

at the boundary r = a and five unknown amplitude coefficients for

the five potential functions Ui , Vi .

We can write the relation (5-2) for the potentials in the

beam-plasma region in its expanded form.

3

Ez = Sll UI + S12 U2 + S13 U3 = [ SIj U.
j=l ]

3

= s21Ul + s22u2÷ s23h = [ s2j u.
j=l ]

Pb = S31 U1 + $32 U2 + $33 U3 =

3

][ s3j u.
j:l ]

(5-24)

Similarly for the plasma region, the relation (5-5) becomes:

5

Ez = TI4 V4 + TI5 V5 = [ TIj V.
j:4 ]

5

:T24v4+ T2sv5: ; T2jv
j:4 ]

(5-25)

The set of boundary conditions for the beam-plasma--plasma interface

i

can be obtained in terms of the potential functions Ui , Vi by

using the relations (5-18)-(5-23), (5-24), (5-25) and the relation-

ships derived in Chapter 2 for Er , He , Vpr , and Vbr . This set

of equations is written in its final form so that we have a set of

five homogeneous equations interns of five unknown amplitude

I
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coefficients.

alPllJo(Ala) + a2Pl2J_(_a)+ a3Pl3JoO,3a) + C4P14_o(_4a) + CsPIsHI(u5a)

= 0

alP21Jo(_la) + .................... C5P25HoI(U5a)

=0

alP31XlJI(_I a) + a2P32_2Jl(_2a) + .......... C5P35HI(_5 a)

:0

alP51llJl(ll a) + a2P52_2Jl(12a) + ..........
1

C5P55Hl(_5 a)

= 0 .

(5-26)

We have not as yet deter_ed the eigenvalues which satisfy

this set of equations for arbitr_ amplitude coefficients. The

solutions for theeigenvalues can be obtained by r_qui_ing the

condition that the deter_t of the matrix multiplying the coef-

ficients, ai, ci , must be zero in order to have non-trivial

solutio_ for these _fficients.

The pz_cedure for deter_dning the correct values of propagation

constant and eige_values is then as follows:

(i) Pick a value of the propagation constant k ,

which has both real and imaginary parts

(2) Calculate the eigenvalues I.

!
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(8) Construct the boundary condition matrix whose

elements multiply the coefficients ai , ci

(4) Find the determinant of the matrix which must

be zero if there is to be a solution for the

problem.

This procedure must be an iteration scheme since one must change

the input k such that the determinant vanishes. A computer pro-

gram has been written to carry out these iterations and the final

results for the finite beam-infinite plasma system are given in

Figs. (5-2)-( 5-4 ). A detailed description of the computer program

is given in Appendix E.

For curve (i) shown in Figs. (5-2) and (5-3), the "temperature"

of plasma electrons is of the order of .03 volts while that of the

beam is roughly .004 volts. The d.c. beam velocity corresponds

to an accelerating potential of about .8 volts and Vb/Up = S .

This ratio for the unbounded system corresponds very nearly to the

maximum gain condition.

The parameters chosen, represent a very slow beam in a

relatively cool plasma. A comparison of the solutions for these

parameters and the corresponding solutions of Chapter 3 indicates

that the gain curves for the bounded system is considerably less

broadband and that the finite radius beam system has less maximum

gain.

i
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The solutions of the determinental equation indicated that

there were a number of solutions which satisfied the boundary

condition matrix for each set of parameters, however, it was found

that only one solution corresponded to wave phase velocities

Ik_a Ii which wer_ slightly less than the beam velocity Vb and

could reasonably represent a traveling-wave instability.

Computations were performed for an infinite plasma-finite beam

system with parameters corresponding to those used by Crawford and

29
Cannara in a quasi-static cold beam analysis which also neglected

collisions. It was found that two solutions with both positive real

and imaginary propagation parts exist as was demonstratedby

Crawford and Cannara. However, it was observed that both solutions

had phase velocities slightly larger than the beam velocity. It is

believed from a physical point of view that these waves could not

represent traveling wave instabilities when the phase velocity is

greater than the beam velocity. Self has pointed out that in the

absence of collisions or temperatures of sufficient magnitude, the

instabilities appear to be absolute or non-convective and can be

stabilized by introducing sufficient collisions, such that only

traveling wave instabilities exist.

In an attempt to see this effect, a small amount of collisions

were introduced for both the beam and the plasma. It was found that

the collisions did slow the phase velocity of on____ewave to a point

where it always had a phase velocity less than or equal to the beam

I
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velocity. The second solution which had a smaller imaginary propa-

gation constant ki was not similarly affected by the collisions

and its phase velocity was greater than the beam velocity for

frequencies below the plasma frequency.

A comparison of the curve of Crawford and Cannara and the curve

computed with the effects of beam temperature, a.c. magnetic field

and collisions included is shown in Fig. (5-4).

It is to be noted here, that the collisions that were intro-

duced were very small in magnitude and did not alter the gain curve

so that the effects of collisions are seen only in slowing the wave

slightly.

The curves shown for the quasi-static cold beam system and the

exact analysis show good agreement for the real propagation constant,

but the exact analysis indicates somewhat greater gain and broader

bandwidth indicating that the effects of beam temperature or the

a.c. magnetic field are important. It is expected that these

quantities would have a sizable effect on the beam-plasma boundary

conditions.

Thus, although the quasi-static zero beam temperature case is

much simpler to analize and gives a very good indication of the

shape of the propagation curve, it is felt that a more exact analysis

is needed to explain magnitude behavior of the propagation constant.
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Chapter 6

CONCLUSIONS

The theoretical development of Chapter 2 and the results

indicated in Chapter 5 demonstrate that the coupled equations de-

scribing a beam-plasma system can be solved exactly with the aid

of a high-speed digital computer and that the model chosen which

includes the effects of collisions, temperatures, finite boundaries,

a.c. magnetic fieldsand an external d.c. magnetic field is a self-

consistent model. It should be noted, that this model is based on

a small signal analysis and can not describe the beam-plasma inter-

action under conditions in which the a.c. perturbations are not

small compared to the d.c. quantities. In addition, the d.c.

magnetic field must be weak in order that the force term due to a

pressure can be approximated by a gradient of the scalar pressure.

One must keep in mind, also, that this model does not hold for all

ranges of plasma and beam parameters or excitation frequencies

since a number of assumptions were made concerning stationary ions

and neutrals and the plasma and beam electrons were assumed to

interact collectively through the a.c. electric and magnetic

fields. One would expect that for extremely high plasma densities

the model would not describe adequately the electron interaction.

The question arises as to whether a model chosen for beam

plasma interaction would be drastically changed if the effects of

94



I

I

I
I
I

I

I
I

I
I

I
I
I

!
I

I
I

I

95

finite gradients in the d.c. plasma densities were considered.

Kollettis 30 has shown in a study of surface waves on a plasma

column that a slow radial density variation of a plasma column can

be accounted for satisfactorily by using an average electron

density. One might expect the same conditions would hold in an

electron beam-plasma experiment, since the potential solutions

(excepting the beam pressure) are very nearly the same as a func-

tion of the transverse or radial direction since in both systems,

the electromagnetic fields and the plasma pressures tend to

maximize near the beam-plasma interface. A comparison of experi-

mental results with theory would determine under which conditions

the d.c. variations can be neglected. It seems very reasonable

that in systems where the background plasma and the beam have

rapid variation with radius, the effects of nonunifozmtity would be

quite noticeable and the effects should be included if an accurate

model is to be obtained.

The results presented graphically in Chapter 5 do not include

effects of a d.c. magnetic field, however, the computer solution

proceeds in exactly the same manner and is not any mere difficult

for the most general beam plasma problem. Searching for the roots

that satisfy the boundary condition matrix is rather tedious and

difficult, since the contours in the k plane generally have a

number of sharp minima. Also, because of the way in which the

simularity matrix is constructed, there are minima located at those

I
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points where two eigenvalues of the coupling matrix for the beam-

plasma region are equal. These minima were taken to be erroneous

solutions, although the possibility exists of having a solution

which corresponds to repeated eigenvalues as described in Chapter 4.

A search for all minima must be made and those solutions which

are not reasonable solutions are discarded.

The reason underlying this investigation was to develop a

general theory for the beam-plasma interaction which is tractible

and includes most of the physical mechanisms of the beam plasma

problem. A test of the validity of this model can only be obtained

by a comparison of theory with experinmnt, but it is believed that

including the effects of temperature and collisions in a non-quasi-

static approach for both the beam and plasma quantities should more

closely describe the physical problem.
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APPENDIX A

A.C. POWER RELATIONS

The differential equations describing the beam-plasma wave

interaction are rewritten for convenience.

V xE + j_ _oH : 0

.+ -_ .+ -_

V X H- jm EO E + Nb e vb + % e Vp +
e Pb Vb _ 0

m %(jm + 9p)% + %

-9- -_ "@

e(E + Vp x BO) + V% : 0

•9- -9- -9- -9- -_

m Nb(Jm + {Vb • V} + Vb)_b + Nb e(E + Vb x _oH + vb x BO)

+ VPb = 0

2 mV. (N _ )+ j_ P : 0
P P P

(A-l)

(A-2)

(A-3)

(A-4)

(A-5)

CA-6)

The power relations are derived from the divergence of the

Poynting Vector.
b

V • (ExH) =H • VxE-E • VxH

: - j_ _o H • H + jm Co E • E - E • J

where

(A-7)

97



'I

l
I
i
I

I
I

I
I
I

I
I
I
I

I
I

I
i

98

<, eP4vb)-+ ÷ ÷ +
J = - e Vb + Np e vp (A-8)

and the asterisk, * , denotes the complex conjugate. The dot

product of E and J is obtained by using Equation (A-8).

* -> ->

J • E = - e Vb. E + Np e Vp • E + m_

(A-9)

÷,
The dot products of Equation (A-3) with v and Equation (A-4)

P
÷* -_

with vb and Vb give:

m Np(jm + _p) Vp • Vp + Np e Vp • E + Vp • VPp : 0 ,
(A-10)

÷ -_* ÷,
m Nb(jm + vb) vb • vb + m Nb vb • (_b " V) _b (A-II)

÷, ÷ ÷, ÷ ÷ ÷*

+ uN_ e uV_ • E + uN_ e vb • (Vb x _o H) + vb • VP,D : 0

-_ _> -> -> __

m Nb(Jm + _b ) Vb • vb + m Nb Vb • (Vb • V) vb

+ Nb e Vb • E + Vb • VPb = 0 .

(A-12)

Equations (A-9)-(A-12) are now used to write the expression for

J .E:
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J
÷ +* ÷_% VPp (A-13)

_p) • v + v •• E : mNp(j_ + Vp p p

+ m Nb(]m + _b ) vb " Vb +mN b vb " (Vb " v) vb

+ Nb e vb • (Vb x _o H) + vb " VPb

+ (_m+_b)V b • m Vb" (Vb" V)_b+- '

m u_%

We can use the following _elations to express (A-13) in a

different form:
¢c

]_ Pp P

_* • VPp v • (Pp_*) - R
Vp P m u2 N

P P

(A-14)

÷ Ip Pb Pb VN_1
÷, Pb Vb " VPb ÷*

Vb Vpb + - = V • b Vb +• m_
m _ Nb (A-15)

• _ ]_ Pb P_

• ÷ _ < Pb Pb
<+* Pb Vb = v . Pb?b + - - -- '- Pb V " Vb ÷ m u_ Nb/ m u_ Nb/ m _ Nb

, ÷-. p + _b }

_b Pb Vb_ ÷ -_ -_m(jm + _b ) Vb "
÷* . {Vb • V} vb +

m Vb+ m_J m_

<.(N " ")
÷* (Vb • v + {m _b Vb " Vb}

:_" b_b+ mi/ ml

-m Vb+ mu_J

-9.

{_b x (V x vb)}

CA-16 )

I
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where Equation (A-6) was used to reduce (A-15) to its final form

and the vector identity

V(V b • vb) = (Vb • V) vb + Vb x (V x vb)

was used to obtain (A-16).

(A-17)

I

I

I

I
I

I

Equation (A-7) is rewritten with the aid of Equations (A-13)-

(A-J6).

÷* +* ÷_'_ Pb Vb ÷_ Pb V ÷

/

: - jm _O H • H + jm co E • E - m N (jm + _ ) ÷v • ÷*v
P P P P

- m Nb(Jm + _b)_b
÷* J_ P P J_ Pb Pb Pb

•Vb+ P P +

mu2N m_N b m_P P

->

(m vb Vb • Sb )

- Nb e Vb " (_b x +m_bVb + _) " {Vb x (V x Vb)}
(A-18)

I The last term in Equation (A-18) can be expressed in a

different manner with the aid of (A-4). The cross product of the

(% %)• V) x -0 .

I veam velocity, _b ' with the curl of Equation '(A-q) gives:

I mNb{Jm + (Vb iV)+÷ ÷ Vb}{Vb xVx÷ Vb}-Jm÷ Nb e(vb x _° H)

I - Nb e(vb V)(V b x _o H) + Nb e(B O

÷*

I The dot product of (A-19) with vb is written:

(A-19)

I
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m Nb(Jm + vb) vb • (Vb x V x vb) + m Nb vb • (Vb • V)(V b x V x vb)

- jm Nb e vb • (Vb x UoH)-N b e vb • (Vb • V)(V b x _oI{) = 0 .

(A-20)

If the beam collision frequency, _b ' is zero; then

m Nb Vb x (v x vb) = Nb e (Vb x Uo H) (A-21)

since Equation (A-20) requires the two terns to differ only by a

constant (or the operator jm + Vb • V = 0 --a trivial result) if

vb is zero. For the case in which beamcollisions are neglected,

then, the power relation reduces to:

-_ "_* D /'+_'_ Pb Vb +"_ Pb Vb'_ ÷

V • x H + Pp Vp _b b /

J_ P P J_ Pb Pb
- m Nb(J_) _b " _b + P p +

m u 2 N m Ul_ NbP P

The general power relation, (A-18), can be rewritten using

the r_lation:

_b----eb_ ÷ m/ /
(.\-23)

The result is:
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_* +* Pb Jb m "

V • x H + P v i_b'"e (Vb" _p p e

- - Jm Uo H • H + jm _ E • E - m N (jm + _p) vo p p

- m Nb(Jm + _b ) vb • vb +

, (m _b Vb " Vb)

- Pb

m i

#,

J_Pp% J_PbPb
+

mu 2 N m_N b
P P

• V
P

(A-24)

+* + ÷ m + ÷* ÷

+ Jb " (Vb x _o H) + --e (Vb x Jb ) • (V x v b) .

Equation (A-24) is of the form one usually sees in the description

27
of traveling wave tubes.

If we are dealing with longitudinal wave solutions, then

V x E = - j_ _o H = 0 , and the power relation is obtained from

(A-24) by setting H equal to zero. The relation is actually

derived from Equation (A-2) but the result is the same one obtained

by setting H = 0 in (A-24).

The terms on the right hand side of (A-24) are interpreted in

the following manner:

(i) The first six terms correspond to time rate of

change of magnetic, electric, plasma electron kinetic,

beam electron kinetic, plasma accoustic potential, and

beam accoustic potential energies. Losses of kinetic

energy correspond to terms involving _ and
p b "

I
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-Pb + -9-

(2) The term -- (mv b Vb • v b)

mu_
is a power transfer

term which may produce a gain depending on the phases of

the beam pressure and beam velocity.

(3) Jb " (Vb x Po H) is a power interaction term

between the beam current and the Lorentz type electric

field introduced by the drifting beam.

m -_ +* ÷

(4) _ (Vb x Jb ) • (V x vb) is a power interaction

term which arises because of the rotational nature of

the veam velocity, vb . This term is familiar in form

to fluid dynamicists and for cases where vb x V x vb

is zero for nonvanishing ÷ +vb and V x vb , the velocity

vector is sometimes called the Beltrami vector and the

flow is called Beltrami flow. Again, we point out the

fact that the last two terns of (A-24) cancel if the

collision frequency in the beam, v b , is zero.

The terms on the left side of (A-24) correspond to energy

flux, where:

(I) E x H is the electromagnetic Poynting Vector,

(2) P v
P P

waves,

is the accoustic energy flux of the plasma

(3)
- Pb Jb

Nb e
is the accoustic energy flux of the

!



I

I
I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I
I

104

beam waves

- m ÷* ÷ Sh(4)
--6-Jb(Vb • __) is the d.c. to a.c. conversion

term that accounts for the gain in the beam-plasma

interaction. It is important to note that the a.c.

velocity of the beam must have a component of velocity

parallel to the d.c. beam velocity in order for this

energy transfer to take place.
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APPENDIX B

DERIVATION OF THE POTENTIAL FUNCTION EQUATIONS

We shall now derive a set of coupled second order differential

equations involving potential functions from which the total field

solution is obtained.

Taking the transverse curl of Equations (2-63) and (2-65), and

using the relations (2-58)-(2-62), we obtain:

v_E- az z

v_H- az z

- jk Vt • Et + j_ _oVt xHt : - Vt XJmt ,

.+ -+ __

- jk az Vt • Ht - j_ co Vt x Et

_> ->

+ Nb Vbt) : Vt x Jet "+ e Vt x (% Vpt

(B-l)

-(B-2)

The transverse divergence of Equations (2-63) and (2-65) gives

÷ ÷ _mtjk az÷ • (Vt x Et) + jm _o Vt " Ht : - Vt " (B-3)

jk ÷
a z (Vt x Ht) - j_ co Vt • Et + e N Vtp " Vpt

+ e Nb Vt • Vbt : Vt • Jet (B-4)

Substituting Equation (2-64) into (B-3) and dividing by Jm _o

gives:

÷ Vt "Jmt+ k j

Vt • St - jk Hz - J'" _o _---O mz
(B-5)
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which is just a form of Maxwell's constitutive relation

÷ V • J
m

V • Uo H - j_ : pm ; (B-6)

where Pm is an equivalent magnetic charge density. Multiplying

Equation (2-71) by the factor e__ gives:
mu 2

p

÷ jmeP

e N Vt - P + jk e N v + e-_-S
P " Vpt mu 2 p pz mu 2 p

P P

(B-7)

From Equation (2-68),

jk P
-eEz + P +

V :

pz m(j_ + _p) mNp(j_ + v )P

_ P

z mu 2 N
P P

m Np(jm + Vp)

(B-8)

Combining Equations (B-7) and (B-8) yields:

eN
P Vt • VPt : _je p

mu_ _o-_vP

N e2kE

p , z+ e S +

m(j_ - j_p) mu_ P

ke z mu2N

P P

m(m- j_p)

(B-9)

->

We can derive the term eNb Vt • Vbt

Equation (2-72) is rewritten:

in a similar manner.

i
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•_bt:-_ ("-k%)% ÷jkeNbVbz
m/

(B-IO)

From Equation (2-70),

Z =

jk Pb

m Nb(J{_ - k Vb} + vb)

Pbm Nb
m Nb(J{_ - k Vb} + vb)

eE
Z

m(j{_ - k Vb} + vb)

(B-ll)

Combining Equations (B-10) and (B-II) yields:

eNbV t

/
= _ j e i{_- k Vb} -

Vbt mu_ \

Nb ez k e Sb
E +--+

m(_ - k Vb - jvb) z m

z]
k bz m i Nb Fb°

m(m - k Vb - jvb)

(B-12)

Equation (2-66) can be solved fox

(B-8) and (B-II) are used.

Vt x Ht when Equations
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÷ / k a Vb
+ - e k Pp az e _ z +

vtxH t- m(m j Vp) m
Pb

- m - k Vb - jvb)

+ P _p)j _z

J gO -

I (m - k Vb - jvb) (m - j

I [ pz m u2 N pozf

+je_ p p

I (m - j _p)

I +is (bz m _ Nb DO_/ b

I

I

+J
ez

(B-13)

- j Vb ) ,

where
2 NB,p e2

m_,p = me
O

are the squares of the beam and plasma

frequencies. Taking, now, the transverse divergence of Equation

I
I
I

I
I

I
I

I

(2-65) and using Equations (B-9), (B-12), and (B-13); the expression

for Vt • Et reduces to

÷ - e Pb e Pp vt " Jet k
• _ - + +--J

Vt Et jk Ez mE ez
m i Eo m u2 e° - jm E op o

z u2 N

+ e Sb + e S +jke m P P

mu_(jmE O) mu_(jme O) P mine0 (m- j Vp)

(B-14)

Pb )bz Fboz

+jke m_Nb

m mc° (m - k Vb - j_b )

which is just Maxwell's constitutive relation

I
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-_ _e
V -E=--

E
0

(B-15)

where

Pe

Pe is the electric charge density and here,

eS eS beP eP b V" Je + p + ..

m u2 m _ j_ m u2(jm) m _(jm)P P

z u2 N
+jke m p p

m_ (_ - 5 Vp)

rbo
+jke mU_Nb

mm (m - k Vb - j_b )

(B-16)

where the ratios _ :
2

muf_,p

densities.

nb,p are the a.c. beam and plasma charge

Taking the transverse curl of Equation (2-67) and substituting

Equations (2-64) and (B-9) and combining terms gives:

+-Vp _ _ _ e_ _ u_ _pp
*'P_Te Vt X --t _UO SO m2 k 2

(_ _ j_p) z (_ - j_p) mu2p (_ - jVp_

P E - Vt x - P ÷

• )2 z m(m- j_p) t m u2 N(m - ]_p p p

(B-17)

-+

• m2 j
]Eo p mz_

(,,,- j _p)

eB

where _ : _ is the cyclotron frequency vector.
m
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In a similar manner, Nbe 7t x _bt can be calculated by taking

the transverse curl of Equation (2-69) and using Equations (2-64),

(B-5), and (B-12).

_e Vt x Vbt = -

+

(m - k Vb - j_b ) _o(m - k Vb)H z -

_- (_ - k Vb) -

Nb e <.- k Vb - j _b>

_ , _ e Vt X _ + J_ co Jmz

m(_- k Vb - jvb) m _ NbJ (m - kV b-jr b)

, <
_ _m_ Sb ke

I (,,,- kVb - jvb) + -_-

Pb Fbozl \IFbz m_Nb

(m - k Vb - jvb)

->

jk_ E
Z

(_- kVb - j_b )

(5-18)

I We can now rewrite Equation (B-l) using the relations (B-13)

I
and (B-14).

I

I

I

I

I

I

I
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+ 1 P, -

V_ Ez _(m - J_P)

+ "k/ks._((__o _oe - jvi')-m o u2 P
p--

+

_(m _ kV b _ jvb)/ z

e 0 (m-kV b-jr b)

÷ ÷ ke

= az • Vt x Jmt
mu 2 g

p o

+ mu_ .jPb

k2 _ k2

_ j o Jez +

_E 0

(k2 - k2)e _z

0
+

m mE°

ke k Vt •

--S --S b +
P mu_ ¢o m eo

_ p poz
(kz _ k2)e z m u2 N

o ,,p p

m mE° (_, - jVp)

Pb r z)
m I Nb

(_ - k Vb - jvb)

Jet
(B-19)

where k2 : m2 _o ¢ "
0 0

Similarly, Equation (B-2) can be rewritten with the aid of

Equations (2-64), (B-5), (B-17), and (B-18),
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Taking the transverse divergence of (2-67) and using Equations

(B-9), (B-14), and (B-17) we obtain the differential equation for

the plasma pressure.

u2 P P (m • )2 (u2 ]Vp P
p - 3Vp

m2 1 + _k go _2 o_2 m'__/i_p _o Eo p Hz
[u_j b + -e- k _ - j p [. (,,,-j VpP)2e_ Ez

: Np e " Jet kJ..._e_+ p m_ j

j= eO WE:O-') (m_ jVp) e mz

+ j--2--Sb+ j S

_ u2_ P
P

(B-21)

-j

¢o(=- j _p) z
mu 2 N

P P

k_ 2 bz m _ Nb Fbo
-j--£

(_ - k Vb - j vb)

,j

->

(=- jVp)
•Vt x t m u 2 N

P P

+ Vt " t m u 2 N t

P P

The equation for the beam pressure is obtained by taking the

transverse divergence of (2-69) and using the relations (B-12),

I
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1.]J_

(B-IS), (B-14), and (B-18).

+ --12_(,,,- kVb) (_ - kVb - j_b) - k2u_ - i
_Pb u_,

+ m{VbUo¢ o _ - kV b -

[(m- kVb)(m- kV b- j_b )- k2u_]
_ _2

j_b) + Vbll Pb

(m - kV b - j_b )2

_v_u _ _)_+ 0 0 _

< ('"_ j. ) P
P

+ j [..(m_kVb_JUb)2 " I)_ P _

m(m-j_p) m(m-kVb-J _b

E
Z

(m-kVb)lU°e° [ H = Vt •

(m-kVb- J_b ) z t m u{ Nb Fb°t

[_ j(m _ kVb) + "b ] + j i + j

---_- jk +

a) U 2 m(m-kVb-JV b)P

Fbz mu_N b _vt" z)+ Nb e _. "?" Jet reek Je

<. 3,,,Eo o

i me --_]

+j oe j -j

m(__j_p) z m u 2 NP P

+ Nbe Vb Uo Jez + j f_ . Vtx

(_-kVb-J _b ) t m u{ Nb

(B-22)
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In the preceding development, it was rather academic to

assume sources in the problem since our investigation concerns

itself with the investigation of the modes that propagate in the

beam-plasma system. However, it is instructive to note the effects

of coupling when sources are introduced. One would expect that the

problem of investigating proper excitation for a particular wave

would be rather difficult since the sources are coupled in nearly

all of the potential equations.



APPENDIX C

BOUNDARY CONDITIONS

Beam-Plasma--Plasma Interface

In a physical problem where an electron beam interpenetrates

a plasma, the transverse motion of the beam electrons in the

traveling wave produces a rippled boundary effect of the beam which

is shown in Fig. (C-l) for a particular instant of time.

_4__ Z

Fig. (C-l) Beam-Plasma--Plasma Interface

Since the boundary is not uniform at the nominal radius a for

the beam, it would be difficult to apply boundary conditions at

this interface.
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Hahn 28 first used an artificial boundary condition which

accounts for the rippling of the beam by considering the beam

boundary to be fixed at the radius a and placing an equivalent

(4)

/\

(3)

(2)

T< dz >

Fig. (C-2) Cylindrical Shell Volume AV
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surface charge Psb on the boundary to account for the net space

charge of the scallop. The same approach will be used here to

represent the scallop effect of the beam-plasma--plasma interface.

We re-emphasize the fact that this is an artificial boundary condi-

tion that we are imposing on the beam but for situations where the

rippling is very small, (dr small compared to a) , this artifi-

cial boundary condition approaches the actual boundary condition.

For a cylindrical beam, we shall assume that we can construct

a cylindrical shell around the beam-plasma--plasma interface that

encloses the rippling of the beam as shown in Fig. (C-2).

Using the continuity equation for the beam

Nb ÷ Pb e bl Pb e
V • e vb + --V = - jm--

m u_ m u_

(C-l)

and the divergence theorem gives:

I ÷ ÷ I ÷ Pb eNbe vb • n ds = (- j_ + Vb • V)

aS aV m u_

-- dV (C-2)

which can be written as:

Nbe vb • n ds --- j(,,,- k Vb)

aS

I Pb e-- dV

avml

(C-3)

The terms of the integrand of (C-3) are obtained from the first two

terms of a Taylor series expansion and the surface integral terms

I
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for (i) and (2) become:

/
- Nbe Vbz rde dr + qNbe Vbz +

_Vbz

= Nbe --_ a dO dr dz

_(NbeVbz)
_z dz1 rde dr

(C-4)

The integral over (3) and (4) gives:

- Nbe Vbr rde dz + 0 (c-s)

where the term from (4) is zero since the beam velocity is zero on

surface (4). From the remaining ends, we have the e components

which are given by:

_Nbe vbe

De

_Vbe
dr dz de = Nbe _dr dz de (C-6)

The volume integral is given in the following form:

eP b eP b
j(m - kV b) --dV_ j(m - kVb) --a de dr dz

A m_ m_

(C-7)

Thus, Eq. (C-4) becomes, finally:

_Vbz _vbe

Nbe-_a de dr dz - Nbe Vbr a de dz + Nbe--_dr dz d8

e Pb

: j(m - kV b)

mu_

--a de dr dz (C-8)

I
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Since the volume AV encloses the scallop, the term
e Pb
--dr

m_

is

finite and will be defined as the negative of the surface charge

density, -Psb " Therefore

j(m - k Vb) Psb = Nb e Vbr (C-9)

since the other terms on the right side of Eq. (C-8) are on the

order of dr smaller.

In the preceding development, it was assumed that dr was

very small so that the contributions from the sides of the cylin-

drical shell were negligible compared to the contribution from the

radial current. At the same time, dr must be large enough to

enclose the total scallop of the beam. The thermal drift of the

beam was neglected and the results obtained should be a good approx-

imation to the actual boundary condition as long as the beam

temperature is low so that the thermal drift is small during a

period of the a.c. motion. Also, since dr is amplitude sensitive

and must be large enough for AV to enclose the scallop, the

boundary condition should be valid only for small signal analyses.

The question now arises whether one should also consider

contribution to the boundary charge due to the plasma background in

a manner similar to the development for the beam. It does not

appear reasonable to include effects of the plasma in the equivalent

surface charge since the reason for introducing the artificial
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boundary condition was to account for the rippling of the beam! The

charge distribution due to the plasma has already been accounted for

eP

by the term - --P , which is the plasma volume charge density.
m u2

P

One would certainly have to consider rippling in both beam and

plasma if it were assumed that the beam and plasma occupied com-

pletely different regions of space as would be the case for an

electron beam being surrounded by a plasma but not occupying the

same region as the plasma.

Discontinuity in the Electric Field

At the interface of the beam-plasma--plasma system, the normal

component of electric field is discontinuous by an amount propor-

tional to the surface charge on the boundary. The tangential

electric field must be continuous across the boundary. These con-

ditions may be expressed in the following form:

+Ia+so
• E,a - = _sb

(C-IO)

(C-ll)

->

where n is the outward normal to the boundary surface, and (C-10)

is a statement of Gauss's law for the interface.

I



!

!

!
II
!
!
i

!
I
!
I
I
i
I

i
i

!
!

122

Surface Curr_nt

The equivalent surface current at the beam-plasma--plasma

interface is just equal to the equivalent beam surface charge

density times the d.c. velocity of the beam. This surface current

causes the azimuthal magnetic field to be discontinuous at the

interface. Thus, the relations for the surface current and discon-

tinuity in H become:

Js = Psb Vb (C-12)

_x = Js (C-13)

As a consequence of assuming that the plasma background

occupies a region of space with the beam interpenetrating it and

the fact that the beam and plasma are coupled only through the

electric and magnetic fields, we must impose the additional boundary

conditions that the plasma pressure Pp and the plasma velocity

Vp are continuous across the interface. This is equivalent to

specifying that the a.c. plasma density and a.c. plasma current be

continuous across the interface.

We may now s_ize the boundary conditions for the beam-

plasma--plasma interface:

Nbe I
j(m - k Vb) vbr a- = Psb

(C-14)

!



I

I

!

I

I

I
I

|

I

I

I

I
I
I

l
1
!

I

E;
0

123

÷ a+
• Ea_= Psb

_ja÷_X =0

a-

x HIa+' ÷ ÷
= J = Vb

a- s PsbI

- 0

- 0 .

Vpa_

(C-15)

(C-16)

(C-17)

(C-18)

(C-19)
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APPENDIX D

UNIQUENESS OF POTENTIALS

Consider the set of equations

--> .>

v_ U + {_} U : 0 (D-l)

where U is the vector of eigenfunctions and {k} is the diagonal

eigenvalue matrix. The boundary conditions which these functions

must satisfy are of the form:

_SU:f

and (D-2)
->

Z_u_:_

= =m

on the boundary and e and 8 are of the form

m

Oil .... aln

_jl .... _jn

0 .... 0

0 .... 0

, 8=

0 .... 0

.

0 0

8(j+l)l .... 8(j+l)n

8nI 8nn

or a form where _ and _ do not have terms in the same row.

To prove uniqueness, we shall assume that more than one

eigenfunction satisfies each equation so that the difference

124
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solution satisfies the following equation:

V_: UD + {X) UD = 0 . (D--4)

By premultiplying the conjugate of (D-4) by UD and post multiply-
+,

ing (D-g) by UD we arrive at the following relations when the two

dimensional divergence theorem is used:

iUD-_ d£ - Vt UD • Vt UD dS + {l } UDU D dS : 0 (D-S)

C S S

uD d_- vtUP "v_uDdS+ J{_}%% dS: 0
C S S

(D-6)

The form of the last terms in (D-5) and (D-6) were dependent on the

fact that {_} is diagonal. On the contour C which encloses

the surface S , the boundary conditions are:

aSUD=O

and + (D-7)

= = aUD
8S--=0

_n

Thus, premultiplying (D-S) by _ _ and (D-S) by _

we obtain

(_+ _)_ [-
L

vt % • vt uD dS+ {_} uo d
S

- 2j _ _ Im({X}) D dS- 0 •

S

and adding,

(D-8)

I
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=:=

Since (s + _) and _ have inverse matrices, the relation becomes

finally:

Vt UD • Vt UD dS + {X} UD UD dS

S S

I

I

I

!

I

I .+ -+_,UDUDdS: 0
S

(D-9)

The first term in (D-9) has negative definite diagonal terms

if _D is not the zero vector. The diagonal parts of the second

term are in general complex since {A} is generally complex. Thus,

in order to have a non-trivial solution for the difference vector,

the imaginary parts of the diagonals of the second and third terms

at least must cancel. Thus,

I Diagonal Part_{X"} Re[<_-2_-I(_ + _)-i_ _)I _D _; dSj} = 0

! s
(D-IO)

_

where _" is the imaginary part of {_} and _ is the unit matrix.

i Since X" is diagonal, (D-10) implies

I Diagonal Part _ 2_-i(_ + _)-i _ _ UD UD d = 0
S

. (D-II)

i For a given _, 8 one can check this condition and if any term is

non zero, uniqueness is guaranteed. For boundary conditions of the

!

!
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form

sSU= f on C

o__rr (D-12)

8SU=g on C

=:m

where _ or _ has an inverse, the uniqueness is easily seen from

Equation (D-5) or (D-6).
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APPENDIX E

COMPUTER PROGRAM

In this section, the computer program is given which was used

to solve the bounded beam-plasma system. This problem was pro-

granm_d in Algol 60 and run on an UNIVAC 1107 computer at Case

Institute of Technology.
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